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, 1 Introduction

1.1 Background

X-ray-mammography is the most sensitive widely used technique for detecting breast cancer [1], with
a reported sensitivity of 85-95% for detecting small lesions. Most non-invasive ductal carcinomas,
or DCIS, are characterized by tiny non-palpable calcifications detected at screening mammogra-
phy [2, 3, 4]. Traditional mammography is essentially analog photography using X-rays in place
of light and analog film for display. The digital format is required for access to modern digital
storage, transmission, and digital computer processing. Images in analog format are not easily
distributed to multiple sites, either in-hospital or off-site; and there is the cost of personnel salary -
and benefits to store, archive, and retrieve the films. Currently only 30% of American women get
regular mammograms, and the storage problems will be compounded if this number increases with
better education or wider insurance coverage. Digital image processing provides the possibilities
for easy image retrieval, efficient storage, rapid image transmission for off-site diagnoses, and the
maintenance of large image banks for purposes of teaching and research. It allows filtering, en-
hancement, classification, and combining images obtained from different modalities, all of which
can assist screening, diagnosis, research, and treatment. Retrospective studies of interval cancers
(carcinomas detected in the time intervals between mammographic screenings which were inter-
preted as normal) show that observer error can comprise up to 10% of such cancers. That is to
say, carcinomas present on the screening mammograms were missed by the radiologist because of
fatigue, misinterpretation, distraction, obscuration by a dense breast, or other reasons [5, 6, 7]. To
this end, schemes for computer-aided diagnosis (CAD) may assist the radiologist in the detection
of clustered microcalcifications and masses [8, 9, 10, 11, 12]. Virtually all existing CAD schemes
require images in digital format.

To take advantage of digital technologies, either analog signals such as X-rays must be con-
verted into a digital format, or they must be directly acquired in digital form. Digitization of an
analog signal causes a loss of information and a possible deterioration of the signal. In addition,
with the increasing accuracy and resolution of analog-to-digital converters, the quantities of digital
information produced can overwhelm available resources. A typical digitized mammogram with
4500 x 3200 picture elements (pixels) with 50 micron spot size and 12 bit per pixel depth requires
approximately 38 megabytes of data. Complete studies can easily require unacceptably long trans-
mission times through crowded digital networks and can cause serious data management problems
in local disk storage. Advances in technologies for transmission and storage do not alone solve the
problem. Compression is desirable and often essential for efficiency of cost and time for storage and
communication.

A digital compression system typically consists of a signal decomposition such as Fourier or
wavelet, a quantization operation on the coefficients, and finally lossless or entropy coding such as
Huffman or arithmetic coding. Decompression reverses the above process; although if quantization
is used, the system will be lossy in the sense that the image will not be perfectly reconstructible
from the digital representation. Quantization is only approximately reversible. Lossless or invertible
coding allows perfect reconstruction of a digital image, but typically yields compression ratios of
only 2:1 to 3:1 on still frame grayscale medical images. This modest compression is often inadequate.
Lossy coding can provide excellent quality at a fraction of the bit rate [13, 14, 15, 16, 17]. The bit
rate of a compression system is the average number of bits produced by the encoder for each image
pixel. If the original image has 12 bits per pixel (bpp) and the compression algorithm has rate R
bpp, then the compression ratio is 12:R.



Early studies of lossy compressed medical images performed compression using variations on
the standard discrete cosine transform (DCT) coding algorithm combined with scalar quantization
and lossless coding. These are variations of the international standard Joint Photographic Experts
Group (JPEG) compression algorithm [18, 19, 20]. The American College of Radiology—National
Electrical Manufacturers Association (ACR-NEMA) standard [21] has not yet firmly recommended
a specific compression scheme, but transform coding methods are suggested.

More recent studies of efficient lossy image compression algorithms have used subband or wavelet
decompositions combined with scalar or vector quantization [22, 23, 24, 25, 26, 27, 28, 29]. These
signal decompositions provide several potential advantages over traditional Fourier-type decompo-
sitions, including better concentration of energy, better decorrelation for a wider class of signals,
better basis functions for images than the smoothly oscillating sinusoids of Fourier analysis because
of diminished Gibbs and edge effects, and better localization in both time and frequency. Because
of their sliding-block operation using 2-dimensional linear filters, they do not produce blocking
artifacts.

Analog mammography remains the gold standard against which all other imaging modalities
must be judged. In a medical application it does not suffice for an image to simply “look good”
or to have a high signal-to-noise ratio (SNR), nor should one necessarily require that original and
processed images be visually indistinguishable. Rather it must be convincingly demonstrated that
essential information has not been lost and that the processed image is at least of equal utility for
interpretation as the original. Image quality is typically quantified objectively by average distortion
or SNR, and subjectively by statistical analyses of viewers’ scores on quality (e.g., analysis of vari-
ance (ANOVA) and receiver operating characteristic (ROC) curves). Examples of such approaches
may be found in [30, 15, 31, 32, 14, 13, 33].

ROC analysis is the dominant technique for evaluating the suitability of radiologic techniques for
real applications [34, 35, 36, 37]. Its origins are in the theory of signal detection: a filtered version
of signal plus Gaussian noise is sampled and compared to a threshold. If the threshold is exceeded,
then the signal is said to be there. As the threshold varies, the probability of erroneously declaring a
signal absent and the probability of erroneously declaring a signal there when it is not also vary, and
in opposite directions. The plotted curve is a summary of the tradeoff in these two quantities; more
precisely, it is a plot of true positive rate or sensitivity against false positive rate, the complement of
specificity. Summary statistics, such as the area under the curve, can be used to summarize overall
quality in terms of detection accuracy. In typical implementations, radiologists or other users are
asked to assign integer confidence ratings to their diagnoses, and thresholds in these ratings are used
in computing the curves. We have argued in our previously cited references (summarized later) that
traditional ROC analysis violates several reasonable guidelines for designing experiments to measure
quality and utility in medical images because of the use of artificial confidence ratings as thresholds
in a binary detection problem and because of the statistical assumptions of Gaussian or Poisson
behavior. In addition, traditional ROC analysis is not well suited to the study of the accuracy of
detection and location when a variety of abnormalities are possible. Although extensions of ROC
designed to handle location and multiple lesions have been proposed [38, 39], they inherit the more
fundamental problems of the approach and are not widely used, although they are widely quoted
in defense of ROC techniques being applied to non-binary detection problems. Traditional ROC
analysis also does not come equipped to distinguish among the various possible notions of “ground
truth” or “gold standard” in clinical experiments. As will be discussed further, the application of
ROC analysis to the measurement of radiological image quality is fundamentally flawed and does
not in fact demonstrate image quality or lack thereof in the real-world applications of diagnosis and
screening. The problems can all be diminished significantly by alternative experimental design and
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» statistical analysis techniques, but the traditional methods continue to dominate practice.

During the past decade our group at Stanford University has worked to develop alternative ap-
proaches to evaluating the diagnostic accuracy of lossy compressed medical images (or any digitally
processed medical images) that mimic ordinary clinical practice as closely as is reasonably possible
and do not require special training or artificial subjective evaluations. These approaches apply
naturally to the detection of multiple abnormalities and to measurement tasks, and require no as-
sumptions of Gaussian behavior of crucial data. While some departures from ordinary practice are
necessary and some additional information may be gathered because it is of potential interest, the
essential goal remains the imitation of ordinary practice and the drawing of diagnostic conclusions
based only on diagnostic simulations. The methods are developed in detail for CT and MR images
[40, 41, 42, 43, 44]. Extensions to digital mammography were accomplished under this project with
support from the USAMRMC and from Kodak, Inc. Early results are described in [45, 46, 47] and
in a special issue of Signal Processing devoted to medical image compression [48] (preprints of which
can be found at the World Wide Web site [49]). This report collects these preliminary results along
with more recent results and relevant continuing research since the end of the Army grant.

Although the Army project has ended, statistical analysis of the data base generated by the grant
continues with the support of a gift from Kodak, Inc. Additional results based on this analysis will
be submitted later as an addendum to this report and will be available at the USAMRMC workshop
to be held in fall of 1997. They will also form part of the manuscripts to be submitted for publication
based on the final results.

The principal publications derivative from this project, this report, and subsequent addenda
and manuscripts are or will be available in Adobe portable document format (pdf) at the project
web site, http://www-isl.stanford.edu/ gray/army.html.

1.2 Quality Evaluation and the FDA

Radiology is increasingly digital and capable of using digital communication links, storage facilities,
and image processing. Digitization of analog images and most image processing algorithms change
images and may reduce their utility. A traditional approach to establish quality and utility in spe-
cific applications is to simulate the application in a carefully designed experiment, gather necessary
data in a way that interferes with the simulation as little as possible, and analyze the resulting data
to assess the validity of a specific hypothesis, such as “image type A is not different from image type
B” in a specific diagnostic application. In the United States, new devices such as FFDM systems
must receive approval from the Center for Devices and Radiological Health of the Federal Drug
Administration (CDRH/FDA) if they are to be marketed commercially. In September, 1995 the
CDRH/FDA called for comments on a Draft Guidance describing a proposed protocol for clinical
studies that might lead to such approval. The protocol was designed to test the hypothesis that
FFDM is at least as effective as traditional film/screen (F/S) mammography in screening appli-
cations. The original proposal required that more than 11,000 patients be studied, a requirement
which we argued before the CDRH/FDA [50] was vastly excessive for adequately testing sensitivity
and specificity of decisions regarding patient management. Because of the close connection of the
proposed protocol and the protocols developed under this grant, our group became involved in the
FDA open meetings and formally submitted comments on the proposed guidelines. Our arguments
were based on the experimental and statistical methods developed under our current USAMRMC
project. If adopted, the CDRH/FDA proposal would have placed an extreme burden in time and
money on companies seeking approval for such devices. Such a burden could delay the application
of promising new technologies, could have a chilling effect on research, and could discourage com-
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« panies from remaining in or entering the field. The controversy focused on fundamental issues of
how to quantify quality and utility of medical images that have been altered by digitization, digital
acquisition, or image processing. We believe that our testimony based on the protocol and analysis
methods that we developed had an impact on the subsequent CDRH/FDA Final Guidance of June
1996 that removed the 11,000 patient requirement and proposed a study much closer to that pro-
posed by us. Problems remained, however, as the Guidance also required only 2 radiologist judges
in clinical experiments, in our opinion erring too far in the direction of insufficient requirements
for the public’s welfare. We believe there should be at least nine and possibly twelve judges in the
experiment to provide adequate statistical power for the size and tasks considered. We strongly
believe that research of the type performed in this project and described in this report is required

" in order to obtain accurate estimates of the size and power for demonstrating equivalence or supe-
riority of management and detection tasks in mammographic image interpretation as a function of
number of studies and judges, and that such information will be essential to a correct validation of
the quality of images produced by digital mammography devices and of any images which are mod-
ified by computer processing, including computer assisted diagnosis and enhancement. We hope
that the research described in this report will contribute to progress in image quality evaluation
and will cause some researchers in the field to take into consideration the concerns raised here and
the papers cited.

1.3 Compression and Classification

The study reported here used a particular compression algorithm, one which was considered by us to
be the best performing available algorithm in terms of bit rate, quality, and implementational com-
plexity. During the course of the research, however, other compression methods were investigated
and systems combining compression and statistical classification were developed and evaluated by
simulation. The algorithm work was jointly supported by this Grant and by National Science Foun-
dation Grant No. NSF MIP-9016974. Although some of the compression algorithms studied were
competitive with the embedded wavelet schemes in terms of bit rate/quality tradeoffs, the scheme
adopted was still superior in terms of simplicity of implementavion. The algorithms considered for
combining compression and classification are aimed at the long term goal of simultaneously com-
pressing and segmenting an image into suspicious and nonsuspicious regions of various types. These
algorithms combine aspects of compression with empirical Bayes classification and hold promise for
future applications to computer assisted screening and diagnosis, but in their current state they
are not competitive in performance with most of the schemes that have been published to date.
In their_ favor they are much simpler to implement and incorporate the necessary signal processing
into the compression algorithm. Applications of this work to digital mammography were studied
during this project and the results are reported briefly here.

2 Hypothesis/Purpose

The nominal hypothesis of this project has been that digitized mammograms and lossy compressed
digitized mammograms are at least as good as traditional film/screen mammography for the de-
tection of abnormalities, provided that the bit rate is sufficient. We believe that .25 bpp (in place
of 12 bpp originals at 50 micron spot sizes) are sufficient for this purpose. The more fundamental
hypothesis is that the nominal hypothesis can be tested by using a protocol consistent with basic
principles of good experimental design. The clinical experiments fulfill the underlying goals of the
proposed CDRH/FDA protocol for digital vs. analog comparisons.
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The pilot study and the results reported here are consistent with these hypotheses, but the
study is too small to be definitive. The issue of the number of patients and radiologists needed
to provide the size and power for the statistical tests to be definitive is considered in this report.
Nonetheless, the experiment reported here was in our knowledge the largest experiment to date
concerning the comparison of analog, digital, and lossy compressed digital radiological images in
terms of the quantity of data gathered.

The protocol developed here is applicable to comparing any two distinct image modalities used
for a common purpose and hence can also be applied to tasks such as quantifying the effects of
softcopy interpretation and computer assisted diagnostic methods involving image enhancement,

image segmentation, and computer inserted clues.

The conservative hypothesis of substantial equality used here was chosen as that is the criterion
demanded by the FDA for the validation of digital mammography devices for screening applications
— they must perform at least as well as traditional analog mammography. It was our view that such
devices must first be shown to be no worse than existing image modalities in order to encourage
further research and development of future applications which, we believe, will ultimately prove
digital mammography to be in fact significantly superior.

3 Study Design

3.1 Principles of Experimental Design

The general methods used are extensions to digital mammography and elaborations of techniques
developed for CT and MR images by our group and reported in [40, 41, 42, 43, 44|, where all details
regarding the data, compression code design, clinical simulation protocols, and statistical analyses
may be found. We here describe the extensions of these methods to digital mammography. (See
also [45, 46, 47].)

The general goals and specific implementation of the experimental design were developed through
active cooperation among radiologists, statisticians, and electrical engineers. In addition to the
Investigators, many participating volunteer radiologists (two at Stanford University, three at the
University of Virginia and one at the University of California at San Francisco) contributed to the
development through feedback before and during the judging sessions and the sessions establishing
the independent “gold standards” described later. The cases for the pilot study were chosen to
meet statistical criteria outlined later in the statistical analysis section. All radiologists were Board
certified practicing mammographers.

The following general principles for protocol design have evolved from our earlier work. Although
they may appear self-evident in hindsight, they provide a useful context for evaluating protocols for
judging image quality in medical imaging applications and they represent an accumulation of over
eight years of discussion and experience among electrical engineers, statisticians, radiologists, and
medical physicists.

e The protocol should simulate ordinary clinical practice as closely as possible. In particular,
participating radiologists (judges, observers) should perform in a manner that mimics their
ordinary practice as closely as reasonably possible given the constraints of good experimental
design.

e The studies should require little or no special training of their clinical participants.



e The clinical studies should include examples of images containing the full range of possible
findings, all but extremely rare conditions.

e The findings should be reportable using a subset of the American College of Radiology (ACR)
Standardized Lexicon.

e Statistical analyses of the trial outcomes should be based on assumptions as to the outcomes
and sources of error that are faithful to the clinical scenario and tasks.

e “Gold standards” for evaluation of equivalence or superiority of algorithms must be clearly
defined and consistent with experimental hypotheses.

e Careful experimental design should eliminate or minimize any sources of bias in the data that
are due to differences between the experimental situation and ordinary clinical practice, e.g.,
learning effects that might accrue if a similar image is seen using separate imaging modalities.

e The number of patients should be sufficient to ensure satisfactory size and power for the
principal statistical tests of interest.

The ROC assumptions and approach generally differ from clinical practice. Digitization of
an analog image and lossy compression are not equivalent to the addition of signal-independent
noise. Radiologists are not threshold detectors. Using properly designed ROC analysis to compare
computer aided diagnosis (CAD) schemes is appropriate because such schemes almost always depend
on a threshold, albeit in a possibly complicated way. No hard evidence exists, however, to support
the contention that human radiologists behave in this way and, even if they did, that the ROC
method of asking them for confidence ratings to interpret as thresholds in fact measures whatever
internal threshold they might have. This limits the value of using ROC curves to draw conclusions
about quality comparisons among radiologists or among images read by radiologists. Because of the
need for confidence ratings, the traditional ROC approach requires special training to familiarize a
radiologist with the rating system. On the statistical side, image data are not well modeled as known
signals in Gaussian noise, and hence methods that rely on Gaussian assumptions are suspect. This
is particularly true when Gaussian approximations are invoked to compute statistical size and power
on a data set clearly too small to justify such approximations. Modern computer-intensive statistical
sample reuse or simulation techniques can help get around the failures of Gaussian assumptions,
but this does not address the more fundamental issues.

Traditional ROC methods are not suitable for detecting multiple lesions and their locations.
Extensions of ROC such as LROC and FROC to consider location and multiple lesions have been
proposed [38, 39], but the methods are cumbersome and inherit the remaining faults of ROC such as
confidence ratings and Gaussian or Poisson assumptions on the data. In our view they attempt to
fit the method (ROC analysis) to clinical practice in an artificial way, rather than trying to develop
more natural methods for measuring how well radiologists perform ordinary clinical functions on
competing image modalities. These methods have not been commonly adopted and appear to be
primarily used as citations in defense Of the criticism of ROC as being appropriate for only binary
detection problems.

Traditional ROC analysis has no natural extension to problems of estimation or regression
instead of detection. For example, measurement plays an important role in some diagnostic appli-
cations and there is no ROC analysis for measurement error.

Lastly, traditional ROC applications have often been lax in clarifying the “gold standard” used
to determine when decisions are “correct,” when in fact a variety of gold standards are possible,
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. each with its own uses and shortcomings. We focus on three definitions of diagnostic truth as a
basis of comparison for the diagnoses on all lossy reproductions of that image:

Personal Each judge’s readings on an original analog image are used as the gold standard for the
readings of that same judge on the digitized version of that same image,

Independent formed by the agreement of the members of an independent expert panel, and

Separate produced by the results of further imaging studies (including ultrasound, spot and mag-
nification mammogram studies), surgical biopsy, and autopsy.

The first two gold standards are usually established using the analog ofiginal films. As a result,'

they are extremely biased in favor of the established modality, i.e., the original analog film. Thus
statistical analysis arguing that a new modality is equal to or better than the established modality
will be conservative since the original modality is used to establish “ground truth.” The personal
gold standard is in fact hopelessly biased in favor of the analog films. It is impossible for the
personal gold standard to be used to show that digital images are better than analog ones. If there
is any component of noise in the diagnostic decision, the digital images cannot even be found equal
to analog. The personal gold standard is often useful, however, for giving some indication of the
diagnostic consistency of an individual judge. The independent gold standard is also biased in favor
of the analog images, but not hopelessly so, as it is at least possible for the readings of an individual
judge on either the digital or analog images to differ from the analog gold standard provided by
the independent panel. If the independent panel cannot agree on a film, the film could be removed
from the study; but this would forfeit potentially valuable information regarding difficult images.
By suitable gathering of data, one can instead define several possible independent gold standards
and report the statistics with respect to each. In particular, a cautious gold standard declares a
finding if any of the panel do so. An alternative is that the panel designates a chair to make a final
decision when there is disagreement.

Whenever a believable separate gold standard is available, it provides a more fair gold standard
against which both old (analog) and new (digital, compressed digital) images can be compared.

3.2 Image Database

The image database for this USAMRMC project was generated in the Department of Radiology
of the University of Virginia School of Medicine and is summarized in Table 1. The studies were
digitized using a Lumisys Lumiscan 150 at 12 bpp with a spot size of 50 microns. Good quality
directly acquired digital mammograms were not yet available when the experiment was begun, so
digitized mammograms were used. The 57 studies included a variety of normal images and images
containing benign and malignant objects.

For a definitive study these numbers would be scaled up to provide sufficient size and power for
the statistical tests proposed. We proposed the specific numbers of Table 2 to the FDA [50], but
the power and size considerations considered later suggest that this may be somewhat small.

We do not wish to simulate the proportion of normal images to ones containing pathology that
would actually be found in a screening situation as there would be too few cases of pathology (6-8
cancers/1000 asymptomatic women screened). This issue is dealt with in the Statistical Analysis
discussion.
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« 3.3 Experimental Protocol

Images were viewed on hardcopy film on an alternator by judges in a manner that simulated ordinary
screening and diagnostic practice as closely as possible, although patient histories and other image
modalities were not provided. Two views were provided of each breast (CC and MLO). Each of
the judges viewed all the images in an appropriately randomized order over the course of eighteen
sessions. A clear overlay was provided for the judge to mark lesion and nipple location on the
image without leaving a visible trace. For each image, the judge either indicated that the image
was normal, or, if something was detected, had an assistant fill out the Observer Form found in
Appendix B using the American College of Radiology (ACR) Standardized Lexicon by circling the
appropriate answers or filling in blanks as directed. The instructions for assistants are also in the -
Addenda. Current versions of these forms along with a CGI web data entry form may be found at the
project Web site [49]. The judges used a grease pencil to circle the detected item. The instructions to
the judges specified that ellipses drawn around clusters should include all microcalcifications seen, as
if making a recommendation for surgery, and outlines drawn around masses should include the main
tumor as if grading for clinical staging, without including the spicules (if any) that extend outward
from the mass. This corresponds to what is done in clinical practice except for the requirement that
the markings be made on copies. The judges were allowed to use a magnifying glass to examine the
films.

Although the judging form is not standard, the ACR Lexicon is used to report findings, and
hence the judging requires no special training. The reported findings permit subsequent analysis of
the quality of an image in the context of its true use, finding and describing anomalies and using
them to assess and manage patients.

To confirm that each radiologist identifies and judges a specific finding, the location of each lesion
is confirmed both on the clear overlay and the judging form. Many of these lesions were judged as
‘A’ (assessment incomplete), since it is often the practice of radiologists to obtain additional views
in two distinct scenarios: (1) to confirm or exclude the presence of a finding, that is, a finding that
may or may not represent a true lesion, or (2) to further characterize a true lesion, that is, to say
a lesion clearly exists but is incompletely evaluated.

The judging form allows for two meanings of the ‘A’ code. If the judge believes that the finding
is a possible lesion, this is indicated by answering “yes” to the question “are you uncertain if the
finding exists?” Otherwise, if the lesion is definite, the judges should give their best management
decision based on the standard two-view mammogram.

The initial question requesting a subjective rating of diagnostic utility on a scale of 1-5 is intended
for a separate evaluation of the general subjective opinion of the radiologists of the images. The
degree of suspicion registered in the Management portion also provides a subjective rating, but
this one is geared towards the strength of the opinion of the reader regarding the cause of the
management decision. It is desirable that obviously malignant lesions in a gold standard should
also be obviously malignant in the alternative method.

3.4 Statistical Analysis
Management

We first focus on patient management, the decisions that are made based on the radiologists’ reading
of the image. Lesion-by-lesion accuracy of detection is considered later.

Management is a key issue in digital mammography. There is concern that artifacts could
be introduced, leading to an increase in false positives and hence in unnecessary biopsies. The

12



» Imanagement categories we emphasize are the following four, given in order of increasing seriousness:

RTS incidental, negative, or benign with return to screening
F /U probably benign but requiring six month follow-up
C/B call back for more information, additional assessment needed

BX Immediate biopsy.

These categories are formed by combining categories from the basic form of Appendix B. RTS

" is any study that had assessment = 1 or 2, F/U is assessment = 3, C/B is assessment = in-

determinate/incomplete with best guess either unsure it exists, 2 or 3, and BX is assessment =

indeterminate/incomplete with best guess either 4L, 4M, 4H or 5, or assessment = 4L, 4M, 4H or
5.

We also consider the binarization of these four categories into two groups: Normal and Not
Normal. But there is controversy as to where the F/U category belongs, so we make its placement
optional with either group. The point is to see if digitization or lossy compression make any
difference to the fundamental decision made in screening: does the patient return to ordinary
screening as normal, or is there suspicion of a problem and hence the demand for further work.

Truth is determined by agreement with a gold standard. The raw results are plotted as a
collection of 2 x 2 tables, one for each category or group of categories of interest and for each
radiologist. The differences among radiologists prove to be so large an effect that extreme care
must be taken when doing any pooling or averaging of results across radiologists.

A typical table is shown in Table 3. The columns correspond to image modality or method I and
the rows to II; I could be original analog and II original digitized, or I could be original digitized
and II compressed digitized. “Right” and “Wrong” correspond to agreement or disagreement with
the gold standard, respectively. The particular statistics could be, for example, the decision of
“normal,” i.e., return to ordinary screening. Regardless of statistic, the goal is to quantify the
degree, if any, to which differences exist.

One way to quantify the existence of statistically significant differences is by an exact McNemar
test, which is based on the following argument. If there are N(1,2) entries in the (1,2) place and
N(2,1) in the (2,1) place, and the technologies are equal, then the conditional distribution of N(1,2)
given N(1,2) + N(2,1) is binomial with parameters N(1,2) + N(2,1) and 0.5; that is,

n

P(N(1,2) = KIN(L,2) + N(2,1) = 1) = ( "

)2_"; E=0,1,...,n.
This is the conditional distribution under the null hypothesis that the two modalities are equivalent.
The extent to which N(1, 2) differs from (N(1,2)+N(2,1))/2 is the extent to which the technologies
were found to be different in the quality of performance with their use. Let B(n,1/2) denote
a binomial random variable with these parameters. Then a statistically significant difference at
level .05, say, will be detected if the observed k is so unlikely under the binomial distribution
that a hypothesis test with size .05 would reject the null hypothesis if & were viewed. Thus if
Pr(|B(n,1/2) — 3| > |[N(1,2) — §|) < .05, then we declare a statistically significant difference has
occurred.

Whether and how to agglomerate the multiple tables is an issue. Generally speaking, we stratify
the data so that any test statistics we apply can be assumed to have sampling distributions that
we could defend in practice. It is always interesting to simply pool the data within a radiologist
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. across all gold standard values, though it is really an analysis of the off-diagonal entries of such
a table that is of primary interest. If we look at such a 4 x 4 table in advance of deciding upon
which entry to focus, then we must contend with problems of multiple testing, which would lower
the power of our various tests. Pooling the data within gold standard values but across radiologists
is problematical because our radiologists are patently different in their clinical performances. This
is consistent with what we found in an earlier study of MR and the measurement of the sizes of
vessels in the chest [43, 44].

The counts can also be used to estimate a variety of interesting statistics, including sensitivity,
predictive value positive (PVP) (also called positive predictive value or PPV), and specificity with
respect to the personal and independent gold standards. An ROC-style curve can be produced by
plotting the (sensitivity, specificity) pairs for the management decision for the levels of suspicion.
Sample reuse methods (rather than common Gaussian assumptions) could be applied to provide
confidence regions around the sample points [54].

A Wilcoxon signed rank test [55] can be employed to assess whether the subjective scores given to
the analog originals, the uncompressed digitals, and the compressed images differ significantly from
each other. With the Wilcoxon signed rank test, the significance of the difference between the bit
rates is obtained by comparing a standardized value of the Wilcoxon statistic to two-tailed standard
Gaussian probabilities. (The distribution of this standardized Wilcoxon is nearly Gaussian if the null
hypothesis is true for samples as small as 20.) Our previous criticism of Gaussian assumptions are
not relevant when they are applied to statistics for which the Central Limit Theorem is applicable.

Simple means and variances for the management statistics are presented in the Results section.

Learning Effects

The radiologists saw each study at least 5 times during the course of the entire experiment. These
5 versions were the analog originals, the digitized versions, and the 3 wavelet compressed versions.
Some images would be seen more than 5 times, as there were JPEG compressed images, and there
were also some repeated images, included in order to be able to directly measure intra-observer
variability. We therefore needed to ascertain whether learning effects were significant. Learning
and fatigue are both processes that might change the score of an image depending upon when it
was seen.

In this work, we looked for whether learning effects were present in the management outcomes
using what is known in statistics as a “runs” test [51]. We illustrate the method with an example.
Suppose a study was seen exactly five times. The management outcomes take on four possible values
(RTS, F/U, C/B, BX). Suppose that for a particular study and radiologist, the observed outcomes
were BX three times and C/B two times. If there were no learning, then all possible “words” of
length five with three BX’s and two C/B’s should be equally likely. There are 10 possible words
that have three BX’s and two C/B’s. These words have the outcomes ordered by increasing session
number; that is, in the chronological order in which they were produced. For these 10 words, we can
count, the number of times that a management outcome made on one version of a study differs from
that made on the immediately previous version of the study. The number ranges from one (e.g., BX
BX BX C/B C/B) to four (BX C/B BX C/B BX). The expected number of changes in management
decision is 2.4, and the variance is 0.84. If the radiologists had learned from previous films, one
would expect that there would be fewer changes of management prescription than would be seen
by chance. This is a conditional runs test, which is to say that we are studying the conditional
permutation distribution of the runs.

We assume that these “sequence data” are independent across studies for the fixed radiologist,

14



. since examining films for one patient probably does not help in evaluating a different patient. So

we can pool the studies by summing over studies the observed values of the number of changes,
subtracting the summed (conditional) expected value, and dividing this by the square root of the
sum of the (conditional) variances. The attained significance level (p-value) of the resultant Z value
is the probability that a standard Gaussian is < Z.

Those studies for which the management advice never changes have an observed number of
changes 0. Such studies are not informative with regard to learning, since it is impossible to say
whether unwavering management advice is the result of perfect learning that occurs with the very
first version seen, or whether it is the result of the obvious alternative, that the study in question
was clearly and independently the same each time, and the radiologist simply interpreted it the
same way each time. Such studies, then, do not contribute in any way to the computation of
the statistic. The JPEG versions and the repeated images, which are ignored in this analysis, are
believed to make this analysis and p-values actually conservative. If no learning had occurred,
then the additional versions make no difference. However, if learning did occur, then the additional
versions (and additional learning) should mean that there would be even fewer management changes
among the 5 versions that figure in this analysis.

Statistical Size and Power

Given a specified size, test statistic, null hypothesis, and alternative, statistical power can be es-
timated based using the common (but sometimes inappropriate) assumption that the data are
Gaussian. As data are gathered, however, improved estimates can be obtained by modern com-
puter intensive statistical methods. For example, the power and size can be computed for each test
statistic described above to test the hypothesis that digital mammography of a specified bit rate
is equal or superior to F/S mammography with the given statistic and alternative hypothesis to
be suggested by the data. In the absence of data, we can only guess the behavior of the collected
data to approximate the power and size. We consider a one-sided test with the “null hypothesis”
that, whatever the criterion (management or detection sensitivity, specificity, or PVP), the digitally
acquired mammograms or lossy compressed mammograms of a particular rate are worse than ana-
log. The “alternative” is that they are better. In accordance with standard practice, we take our
tests to have size .05. We here focus on sensitivity and specificity of management decisions, but the
general approach can be extended to other tests and tasks.

Approximate computations of power devolve from the agreement tables of the form of Table 3,
where the rows correspond to one technology (for example analog) and columns to the other (digital,
say). The key idea is twofold. In the absence of data, a guess as to power can be computed using
standard approximations. Once preliminary data are obtained, however, more accurate estimates
can be obtained by simulation techniques taking advantage of the estimates inherent in the data.
Table 4 shows the possibilities and their corresponding probabilities. The right hand column and
bottom row are sums of what lies, respectively, to the left and above them. Thus, ¥ is the value
for one technology and 1 + h is the value for the other; h = 0 denotes no difference. It is the null
hypothesis. The four entries in the middle of the table are parameters that define probabilities for
a single study. They are meant to be average values across radiologists, as are the sums that were
cited. Our simulations allow for what we know to be the case: radiologists are very different in how
they manage and in how they detect.

Two fundamental parameters are v and R. The first is the chance (on average) that a radiologist
is “wrong” for both technologies; R is the number of radiologists. These key parameters can be
estimated from the counts of Table 3 resulting from the pilot experiment, and then improved as

4
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. additional data is acquired.

Prevalence

The pilot data set of 57 images has two obvious shortcomings: it is too small to have good power for
tests of reasonable size for those tests proposed, and the prevalence of abnormalities in this data set
does not accurately reflect that of a normal screening population. This violates the literal goals of
accurate simulation and representative statistics for a screening application. The first shortcoming
can be resolved by a larger study, although it is a serious and controversial issue as to how large
the study must be. The second problem, however, is unavoidable with any study of reasonable

- sample size as prevalence in a screening population can vary widely at different locations. We

argue, however, that relevant conclusions can be drawn for the true prevalence based on a carefully
constructed study using different proportions. In order to well simulate the proportion of normal
images to ones containing pathology that actually would be found in a screening situation, we would
require thousands of studies as there are only 6-8 cancers/1000 asymptomatic women screened. In
our approach we do not directly estimate overall statistics for detection (sensitivity, PVP) and
management (sensitivity, specificity). This would result in little power for some of the statistics
without unreasonably large patient numbers or unreasonably large size to the tests. It would
also involve incorporating somewhat arbitrarily prevalence values for the abnormalities. A purely
prospective screening study using commonly assumed prevalence values could require more than
11,000 patients. Our “retrospective/prospective” approach, [50], allows us to compute estimates of
our statistics conditional on the presence or absence of abnormalities and to estimate separately
size and power for both conditional populations. This then yields by straightforward algebra overall
statistics by suitably weighting the conditional statistics to reflect estimated prevalence. The specific
numbers of patients needed for good size and power will be estimated in a cumulatively improving
manner as the data are gathered and the experiments performed. Preliminary analysis based on
standard approximations suggests that this is on the order of 400 — 600.

One reasonable concern about not attempting to simulate accurately a population prevalence is
that radiologists might behave differently if they knew that the prevalences in an experiment were
different from that ordinarily encountered in a clinic. This effect could be analyzed in a quantifiable
manner by varying the prevalence at different sites in a controlled manner not known to the judges
or assistants.

Lesion Detection Accuracy

The question of lesion detection accuracy is of comparable importance to the issue of management.
For the digital technologies to be useful, true lesions detectable in the analog images should be
detectable in the digital. This section explores the theoretical basis for statistical analysis of the
lesion detection problem.

The first issue that needs to be explored is the notion of two lesions being declared equivalent.
We first define what is meant by a lesion (also referred to as a finding). For the purposes of
detection, we will treat a finding as being a dominant observation made by a radiologist belonging
to a single view. This differs slightly from the use of the word elsewhere in this report, where for
example an individual finding might be seen in both the MLO and CC views of a patient. For
detection purposes we consider this to be two separate findings (albeit separate findings sharing
much in common, such as their management category, etc.). Thus, with some oversimplification,
a finding for detection purposes may be thought of as a single circle marked by a radiologist on a
transparency. The rational for so doing is best explained by way of an example. Suppose a doctor
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« has found a abnormality in both the MLO and CC views of a patient when viewed at 0.15 bpp.

The same doctor detects the abnormality in only the MLO view when presented with the analog
images of the same patient. An expert radiologist, on examining the diagnoses, declares that the
doctor was referring to the same abnormality but for whatever reason only saw it in the MLO
view on the analog films. Do we declare these findings, for the purposes of analysis, equivalent or
not? To declare them equivalent would bias statistics towards declaring the technologies equivalent.
To declare them different would bias results in the opposite direction. Instead we treat the 0.15
bpp finding as actually being two separate entities. For analysis we would declare that we have
one matched finding and one unmatched finding, thus achieving a compromise between the two

extremes illustrated in the example.

We now explore in greater depth the notion of two findings being declared equivalent. For any
two findings z and y let us define a function D that equals 1 if the findings are equivalent and
zero otherwise. A finding has associated with it a great deal of information: the view it was visible
in, its physical location in the image, its size, its type, its management category, the name of the
doctor who found it, etc. The function D has available to it all of this information plus whatever
rules are built into it. For example, if D is the pronouncement of an expert radiologist, all of the
radiologist’s training factors into the decision function. Let us refer to the function used by an
expert radiologists as D* and declare it to be truth. We seek a function D' that can be computed
on a digital computer and mimics D* as closely as possible. Hereafter, when we refer to two findings
z and y being equivalent we mean that Df(z,y) = 1 and conversely.

In this experiment, the rules used by D' were purely geometrical ones. Findings were declared
equivalent if they were seen in the same view (of a particular patient) and physically overlapped.
This was a computable function implementable given the data collected in the experiment. It was
also found to be in good agreement with D*, although we do not have quantitative measures of the
agreement at this time.

Given both D! and a gold standard, a value can be assigned to the sensitivity, the probability
that something is detected given that it is present in the gold standard. A judge who labels
abnormalities everywhere in an image could have perfect sensitivity. Predictive value positive, the
chance an abnormality is actually present given that it is marked, fills the role of specificity in
penalizing false positive reporting. A judge who is too aggressive in finding abnormality could have
high sensitivity at the expense of low PVP while a judge who is too stringent about what defines
abnormality could have a high PVP at the expense of low sensitivity. As is the case with the ROC
parameters of true positives and false positives, both sensitivity and PVP will be 1 if the decision
is perfect.

Given that we can calculate sensitivity and PVP values at different bit rates, we need a method
of comparing them across these rates. The comparison used in this experiment was carried out
using a permutation distribution of a two—sample t-test that is sometimes called the Behrens-
Fisher test [52, 53]. The statistic takes account of the fact that the within group variances are
different. The test is exact and does not rely on Gaussian assumptions that would be patently false
for this data set. The use of this statistic is illustrated by the following example. Suppose a judge
has judged N patients at both rates A and B (where a rate includes the analog original images).
The images can be divided into m groups according to whether the gold standard for the image
contained 0,1, ..., m findings. Let IV; be the number of images in the ith group. Let A;; represent
the difference in sensitivities (or PVP) for the jth image in the ith group seen at rate A and at rate
B. Let A; be the average difference:

-~ 1
Ai = E;AU
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and then the Behrens—Fisher t statistic is given by
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The A;; are fractions with denominators not more than m so they are are utterly non—Gaussian.
Therefore, computations of attained significance (p values) are based on the restricted permutation
distribution of tgr. For each of the N patients, we can permute the results from the two rates
or not. There are 2V points possible in the full permutation distribution and we calculate tgp
for each one. The motivation for the permutation distribution is that if there were no differences
between the rates, then in computing the differences A;; it should not matter whether we compute
rate A minus rate B or vice versa. We would not expect the “real” tgr to be an extreme value
amount the 2V values. If k is the number of permuted tgr values that exceed the “real” one then
(k4 1)/2V is the attained one-sided significance level for the test of the null hypothesis that the
lower rate performs at least as well as the higher one. The one—sided test of significance is chosen
to be conservative and to argue most strongly against compression.

4 Compression Algorithms

We use a compression algorithm of the subband/pyramid/wavelet coding class. These codes typ-
ically decompose the image using an octave subband, critically sampled pyramid, or complete
wavelet transformation, and then code the resulting transform coeflicients in an efficient way. The
decomposition is typically produced by an analysis filter bank followed by downsampling. Any or
all of the resulting subbands can be further input to an analysis filter bank and downsampling
operation, for as many stages as desired. The most efficient wavelet coding techniques exploit both
the spatial and frequency localization of wavelets. The idea is to group coeflicients of comparable
significance across scales by spatial location in bands oriented in the same direction. The early
approach of Lewis and Knowles [25] was extended by Shapiro in his landmark paper on embedded
zerotree wavelet coding [27] and the best performing schemes are descendents or variations on this
theme. The approach provides codes with excellent rate-distortion tradeoffs, modest implementa-
tion complexity, and an embedded bit stream, which makes the codes useful for applications where
scalability or progressive coding are important. Scalability implies there is a “successive approxi-
mation” property in the bit stream. As the decoder gets more bits from the encoder, the decoder
can decode a progressively better reconstruction of the image. This feature is particularly attractive
for a number of applications, especially those where one wishes to view an image as soon as bits
begin to arrive, and where the image improves as further bits accumulate. With scalable coding, a
single encoder can provide a variety of rates to customers with different channels or display capabil-
ities. Since images can be reconstructed to increasing quality as additional bits arrive, it provides
a natural means of adjusting to changing channel capacities and a more effective means of using a
relatively slow channel. This approach provides compression algorithms that are among the very
best available in terms of quality for a given bit rate and they are naturally progressive, scalable,
and of modest computational complexity.

After experimenting with a variety of algorithms, we chose Said and Pearlman’s variation [28, 29]
of Shapiro’s embedded zerotree algorithm [27] because of its good performance and the availability
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. of working software for 12 bpp originals. We use the default filters (the 9-7 biorthogonal filters)
in the software compression package of Said and Pearlman [28]. These filters are considered, for
example, in Antonini [23] and Villasenor et al. [58]. A description and discussion of the algorithm
along with access to the software may be found at the World Wide Web site [29]. The algorithm
applies a succession of thresholds to each coefficient, each half the size of the preceding. Coefficients
with magnitude smaller than the threshold are deemed insignificant and are effectively quantized
to zero. Bits are sent only to indicate the location of pixels that fall above the thresholds, and
they are sent in an order determined by a subset partitioning algorithm that takes advantage of the
correlation across scales of significance according to spatial location and orientation. Once a pixel
is deemed significant, further bits sent regarding that pixel are devoted to refining the accuracy of
the actual location by bit plane transmission. The bits are sent so as to first describe the largest
coeflicients, which contribute the most to the reconstruction accuracy. In this way the bit stream
can be stopped at any point with a good reproduction for the given number of bits. The system
incorporates the adaptive arithmetic coding algorithm considered in Witten, Neal, and Cleary [59].

For our experiment additional compression was achieved by a simple segmentation of the image
using a thresholding rule. This segmented the image into a rectangular portion containing the
breast — the region of interest or ROl — and a background portion containing the dark area and
any alphanumeric data. The background/label portion of the image was coded using the same
algorithm, but at only 0.07 bpp, resulting in higher distortion there. We here report SNRs and bit
rates for both the full image and for the ROIL.

The image test set was compressed in this manner to three bit rates: 1.75 bpp, 0.4 bpp, and
0.15 bpp, where the bit rates refer to rates in ROI. The average bit rates for the full image thus
depended on the size of the ROI. An example of the Said-Pearlman algorithm with a 12 bpp original
and 0.15 bpp reproduction is given in Figure 1. For comparison purposes we also compressed a few
images using JPEG [18]. In the JPEG example the background and labels were coded by using
JPEG with default quantization table settings so that the bit rates are not directly comparable.

We also investigated new compression algorithms, including two new forms of multiresolu-
tion vector quantization algorithms. These included vector generalizations of the embedded zero-
tree wavelet technique [60, 61] and a non-wavelet multiresolution technique using tree-structured
codes [62]. The first method used a variable-rate tree-structured vector quantizer applied to the
coefficients produced by an orthogonal wavelet decomposition. The set of vectors from different
levels of the decomposition that correspond to the same orientation and spatial location were ex-
amined in various zerotree groups to determine the different bit rates and distortions achievable for
the set. The decision not to code certain groups of vectors was based upon choosing the desired
distortion/rate tradeoff from among the possibilities. Side information was sent to the decoder to
inform it of the sequence of decisions. The resulting bit stream was entropy coded. Results of
this method yielded a peak signal-to-noise ratio of 30.16 dB at 0.148 bpp on a test image, a slight
improvement on the scalar zerotree codes. The incurred additional complexity, however, made this
approach inferior to the scalar wavelet coding scheme selected.

The second method was an approach to multiresolution image coding without using a wavelet
decomposition. Here a multiresolution tree structured vector quantizer was developed to produce
an embedded code, so that the quality of the image is optimized for the corresponding resolution
at any number of bits. The resolution at which the image is viewed given a particular number of
bits is determined by the specific decoder. The multiresolution tree structured vector quantizer
generates the codebook by greedy tree growing, which is an extension of the generalized Breiman-
Friedman-Olshen-Stone BFOS algorithm [63, 70]. The tree is grown one step further by splitting
the node which will yield the best ratio of the change in distortion at the corresponding resolution
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« of current bit rate to the change in rate. The decoder has codewords of all resolutions obtained
by optimal centroiding for a given resolution and a given encoder partition. The encoding of an
image is essentially the same as BFOS algorithm and the difference is that instead of having a fixed
distortion measure, the distortion measure is defined for the corresponding resolution at a particular
bit rate. The results provided significant improvements at modest complexity for low resolution
images, e.g., for medical images reduced in size for progressive viewing during the rendering of
the full image. At the full size required for screening or diagnostic viewing, however, the quality
was not comparable to the compression algorithm adopted. They may prove useful, however, in
teleradiology applications as they can provide interim high quality small images which may in some
cases speed ROI selection or identification of problems.

5 Compression and Classification

Classification and compression both consist of the mapping of real valued vectors (such as pixel
intensity blocks in an image) into a finite set. If the goal is classification, the set is a collection of
classes such as tumor and nontumor. However, if the goal is compression, the set is a collection of
templates or reproduction codewords. The history of these two fields is intertwined and many similar
algorithms have been developed for the two applications, such as the CART [63] (classification
and regression tree) algorithm for classification trees and tree-structured vector quantization for
compression. Both are designed by optimally trading off a measure of quality, such as mean squared
error for compression or Bayes risk for classification, with a measure of rate or complexity, such as
the average number of bits required to make a decision or represent the template.

By incorporating a Bayes risk term into the usual distortion measure for a compression system,
one can simultaneously optimize a code with respect to compression, classification or any weighted
combination of the two. This is done within the framework of vector quantization (VQ), since there
exists an intimate connection between the algorithms used to design and implement vector quantiz-
ers for compression and those for statistical classification that provides a natural means of jointly
optimizing the two goals. The input is a joint random process {X(n),Y(n);n = 0,1,...}, where
the X (n) are k-dimensional real-valued vectors (pixel blocks in an image compression application)
and the Y (n) designate membership in a class and take values in a set H = {0,1,---,M —1}. The
VQ-based classifier operates solely on the observed sequence X and consists of an encoder «, which
views only X and outputs a binary index ¢ = a(X) € Z and a decoder §, which maps the indices
into the reproduction vectors 8(i) = X; and a class label §(i) € H. Because the index i is used to
both decompress and classify the vector, the classification is implicit in the compression, and hence
no additional computation or bits are required.

The quality of the reproduction X=8 (a(X)) for an input X is measured by a nonnegative
distortion d(X, X), typically taken to be the squared error distortion, d(X, X) = ||X — X|?, for
simplicity. The average distortion for compression D(«, 3) = E[d(X, ,8( (X)))] is then the mean
squared error (MSE). The quality of the classifier is measured by the Bayes risk, defined as B(«, §) =
Yo Pla(X) = 1) x M5 CisyP(Y = jle(X) = i) where the cost Cjx > 0;k = §(i) represents
the cost incurred when a class j vector is classified as class k, where C;, = 0if j = k = 6(3).
These costs can be chosen to reflect the fact that different classification errors can have different
consequences, as do the presence or absence of tumors. If the nonzero costs are chosen to be equal,
then the Bayes risk reduces to the probability of classification error.

The Bayes VQ system [64, 65, 66, 67, 68, 69] consists of two cascaded vector quantizers. The
design of these vector quantizers is based on the empirical distribution P, induced by a training
set of labeled data £ = {(zn,y,);n = 1,...,|L|}. The first stage in the system, a tree-structured
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. vector quantizer (TSVQ), provides an estimate of the posterior conditional probabilities required
to compute the Bayes risk weighted distortion. It is designed in a manner analogous to the CART
algorithm to generate estimates of P(Y = {|X = z) = P;(l|z). The TSVQ is designed to minimize
the distortion given by the average relative entropy D(Pz||P) = Yper Pr() e Pe(l|z) log }Z:((zilm))

between the estimated probability and the empirical probability. Other methods of generating these

necessary probability estimates are under investigation in another project and will eventually be
tested on the mammographic data. Squared error determines which node is used to encode a vector
within the tree. The probability estimate for any node is then given by the relative frequencies of
the class labels given the encoder output. These encoded estimates are used in creating the second

VQ and are not communicated to the decoder.

The second VQ), either full search or tree-structured, incorporates the simultaneous optlmlzatlon
of both compression and classification by using a modified distortion measure that contains both
squared error for general appearance and Bayes risk for classification accuracy. These two error
measures are combined with a Lagrangian importance weighting to form the modified distortion
measure

M-1
o p(@, 8,0 = |lz = 2P+ A 3 CuP(Y = l|z)

§=0

so that

Jypla B,8) = Elp, p(X, (el X)), 6((X)))]
= D(o,B) + AB(a, 7).

This VQ is designed using a descent algorithm, analogous to the Lloyd clustering algorithm algo-
rithm [70], that iteratively optimizes the encoder, decoder, and classifier for each other. The classifier
is a minimum average Bayes risk classifier, defined by 6payes(i) = arg ming )25 L CikP(Y = jla(z)).
The costs, Cj, are particularly important in the classification of mammograms since the conse-
quences of misclassifying an abnormality (i.e. missing a tumor) are quite different than those of
a false alarm. The Lagrangian parameter A provides a flexible tradeoft between compression and
classification priorities. In particular, when A = 0, the focus for designing the encoder and decoder
is purely on compression; we thus create an ordinary minimum MSE VQ. If a class label, opti-
mized for the VQ encoder output, is subsequently attached to these vectors, the system is simply
an independent design of a VQ and a classifier. When A — oo, we obtain a minimum Bayes risk
classifier.

6 Results and Discussion

6.1 Clinical Experiment

The clinical experiment took place in two phases, at Stanford University Hospital during spring
1996 and at the University of Virginia during summer 1996. The experiment required roughly thirty
hours of time for each radiologist (donated) and 500 hours of student assistant or technician time to
schedule and run the sessions, hang overlays and films, and enter the data. The doctors participating
in the study at Stanford were R. Birdwell, M.D., S. Rossiter, M.D. and B.L. Daniel, M.D. The
University of Virginia doctors were L.J. Fajardo, M.D., R. Moran, M.D., and G. DeAngelis,
M.D. The gold standard was established by E. Sickles, M.D., Professor of Radiology, University
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. of California at San Francisco, and Chief of Radiology, Mt. Zion Hospital, and D. Ikeda, M.D.,
Assistant Professor and Chief, Breast Imaging Section, Dept. of Radiology, Stanford University,
an independent panel of expert radiologists, who evaluated the test cases and then collaborated to
reach agreement. The majority of the detected items were seen by both radiologists. All findings
were included, even if seen by only one radiologist. The other type of discrepancy resolved was the
level of suspicion of the detected lesions. Since the same abnormality may be classified differently,
the two radiologists were asked to agree.

6.2 SNR vs. Bit Rate

The SNRs are summarized in Tables 6 and 7. The SNR definition is 10log;y E/MSE, where MSE
denotes the average squared error and E denotes the energy of the digital original pixels. The
overall averages are reported as well as the averages for the specific image types or views (left and
right breast, CC and MLO view). This demonstrates the variability among various image types as
well as the overall performance. Two sets of SNRs and bit rates are reported: ROI only and full
image. For the ROI SNR the rates are identical and correspond to the nominal rate of the code
used in the ROI. For the full images the rates vary since the ROI code is used in one portion of the
image and a much lower rate code is used in the remaining background and the average depends on
the size of the ROI, which varies among the images. A scatter plot of the ROI SNRs is presented
in Figure 2, where each image in the study provides a point.

For comparison purposes we report the results for optimized JPEG for the ROI in Table 8. The
primary observation is that the numbers in the corresponding positions of the wavelet coding table
and the images are visually similar, but the rates needed to make JPEG comparable to the wavelet
scheme are more than 1 bpp higher, a significant amount at the lower bit rates. The bit rates listed
were target bit rates and the actual bit rates achieved varied slightly.

6.3 Management Differences

The focus of this section is on the screening and management of patients and how they are is affected
by analog vs. digital and lossy compressed digital. In all, there were 57 studies. According to the
gold standard, the respective numbers of studies of each of the four management types RTS, F/U,
C/B, and BX were 12, 1, 18, and 26, respectively.

For each of the four possible outcomes, the analog original is compared to each of four technolo-
gies: digitized from analog original, and wavelet compressed to three different levels of compression
(1.75 bpp, 0.4 bpp, and 0.15 bpp). The McNemar 2 x 2 statistics based on the generic table of
Table 3 for assessing differences between technologies were computed 48 times, 16 per radiologist,
for each competing image modality (original digital and the three lossy compressed bit rates). For
example, the 2 x 2 tables for a single radiologist comparing analog to each of the other four modal-
ities is shown in Table 9 (the three Stanford radiologists are referred to as A, B and C, the three
UVa radiologists as D,E and F). For none of these tables for any radiologist was the exact binomial
attained significance level (p-value) .05 or less. For our study and for this analysis, there is nothing
to choose in terms of being “better” among the analog original, its digitized version, and three
levels of compression, one rather extreme. We admit freely that this limited study had insufficient
power to permit us to detect small differences in management. The larger the putative difference,
the better our power to have detected it.

Tables 10 and 11 summarize the performance of each radiologist on the analog vs. uncompressed
digital and lossy compressed digital images. In all cases, columns are “digital” and rows “analog”.
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. Were it the case that a doctor’s management decisions were identical at two different rates, all
off diagonal entries would be zero. Table 10(A) treats analog vs. original digital and Tables 10(B)-
(D) treat analog vs. lossy compressed digital at bit rates of 1.75 bpp, 0.4 bpp, and 0.15 bpp,
respectively. Consider, for example, Table 10(D) which compares the analog images with the
most compressed images for radiologist (A). By summing up the fourth row we see that (A) sent
18 patients to biopsy (the most critical management category) when viewing analog images. By
summing the fourth column, we see that the same doctor sent 20 patients to biopsy when viewed
at 0.15 bpp.

Tables 10 and 11 suggest that radiologists differ substantially from each other. For example,
radiologist (B) is highly likely to biopsy a patient independent of modality, as can be observed by
examination of the (4,4) entries of this doctor’s matrices. Radiologist (E), on the other hand, was
less likely to send a patient to biopsy, again independent of modality. Comparing radiologists was not
a goal of this study; we are interested in what happens when a particular radiologist views the same
image under different modalities. The differences among radiologists merely make it more difficult to
evaluate the differences among analog, digital, and lossy compressed images, since extreme care must
be taken when doing any pooling or averaging of results across radiologists. Nonetheless, a primary
conclusion from the data and analysis is that variabilities among judges exceed by a considerable
amount, in their main effects and interactions, the variability in performance that owes to imaging
modality or compression within very broad limits. In other words, the differences among analog,
digital, and lossy compressed images are in the noise of the differences among radiologists, and are
therefore more difficult to evaluate.

The runs test for learning did not find any learning effect at the 5% significance level for these
management outcomes. For each of the 3 judges, approximately half of the studies were not included
in the computation of the statistic, since the management decision was unchanging. For the 3 judges,
the numbers of studies retained in the computation were 28, 28, and 27. The Z values obtained
were -0.12, -0.86, and -0.22, with corresponding p-values of 0.452, 0.195, and 0.413. Further testing
for learning will include an analysis of the detected findings.

Management Sensitivity and Specificity

The means and variances of the sensitivity and specificity and the mean of the PVP of the manage-
ment decisions with respect to the independent gold standard are summarized in Table 12. In this
table, sensitivity, specificity, and PVP are defined relative to the independent gold standard. The
table does not show any obvious trends for these parameters as a function of bit rate. Sensitivity is
the ratio of the number of cases a judge calls “positive” to the number of cases actually “positive”
according to the independent gold standard. Here “positive” is defined as the union of categories
F/U, C/B, and BX. A “negative” study is RTS. Sensitivity and specificity can be thought of as
binomial issues, and so if the sensitivity is p, then the variance associated with that sensitivity
is p(1 — p). Methods are being developed to provide joint bootstrapped confidence intervals for
sensitivity and specificity. The standard deviation calculation for PVP is somewhat more compli-
cated and is not included here; because PVP is the ratio of two random quantities (even given the
gold standard), the variance calculation requires approximate statistical methods as in analyses by
“propagation of errors.”

Size and Power

In our small pilot study of management, we found sensitivity of about .60 and specificity about
.55. The respective estimated values of h varied from more than .02 to about .07; v was about
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. .05. These numbers are all corrupted by substantial noise. Indeed, the variability associated with
our estimation of them is swamped by the evident variability among radiologists. For a test of size
.05, by varying parameters in amounts like what we saw, the power might be as low as .17 with 18
radiologists, or as high as 1.00 with only 9 radiologists. The power is very sensitive to the three
parameters, and there are not yet adequate data to have make a precise estimate. No matter how
many studies or how many radiologists we would have, one could always vary the parameters so
that we would need more of either or both.

If we think of sensitivity for detection being .85, say, then at least for that quantity 400 studies
and 9 radiologists seem ample. At this time the best recommendation would be to start with the
400 studies we have recommended in the past, 12 radiologists, three at each of four centers, and find
an attained significance level for a test of the null hypothesis that there is no difference between
technologies. And, perhaps at least as important, estimate the parameters of Table 4. At that point
possible numbers of required further radiologists or studies, if any, could be estimated for particular
values of size and power that reviewers might require. The design could be varied so that the pool
of studies would include more than 400, but no single radiologist would read more than 400. In this
way we could assess fairly easily the impact of variable prevalence of adverse findings in the gold
standard, though we could get at that issue even in the situation we study here.

Computations of power apply equally well in our formulation to sensitivity and specificity. They
are based on a sample of 400 studies for which prudent medical practice would dictate RT'S for 200,
and something else (F/U, C/B, or BX) for the other 200. Thus, there are 200 studies that figure in
computation of sensitivity and the same number for specificity. All comparisons are in the context of
“clinical management,” which can be “right” or “wrong.” It is a given that there is an agreed upon
gold standard, independent or separate. For a given radiologist who has judged two technologies —
here called I and II and meant to be digital and analog or analog and lossy compressed digital in
application — a particular study leads to an entry in a table of the form Table 3. Table 5 summarizes
the probability estimates formed by dividing the counts of Table 3 by N, the number of studies
which are not normal.

If the null hypothesis of “no difference in technologies” is true, then whatever be 9 and v, h = 0.
An alternative hypothesis would specify h # 0, and without loss (since we are free to call whichever
technology we want I or II) we may take A > 0 under the alternative hypothesis that there is
a true difference in technologies. Under the null, given b + ¢, b has a binomial distribution with
parameters b+ ¢ and 1/2. Under the alternative, given b+ ¢, b is binomial with parameters b+ ¢
and (1—9¥—h—+)/(2—2t¢ —2y—h). The usual McNemar conditional test of the null hypothesis is
based on (b— c)?/(b+c) having approximately a chi-square distribution with one degree of freedom.

Had the project continued, we would have studied the use of 9 or more radiologists by assuming
that their findings were independent and combining their data by adding the respective values of
their McNemar statistics. We always intend that the size = probability of Type I error being .05.
Since the sum of independent chi-square random variables is distributed as chi-square with degrees
of freedom the sum of degrees of the respective degrees of freedom, it is appropriate to take as the
critical value for our test the number C, where Pr(x% > C) = .05. The four respective values of C
are therefore 16.92, 21.03, 25.00, and 28.87.

Computation of power is tricky because it is unconditional since before the experiment, b+ c for
each radiologist is random. Thus, the power is the probability that a non-central chi-square random
variable with R degrees of freedom and non-centrality parameter [(p;—.5)%/p1q1] i, (bi+c;) exceeds
C/4p1q1, where b;+c; has a binomial distribution with parameters N and 2—2t¢ —2y—h; and the R
random integers are independent; p; = (1—¥ —h—7)/(2—29 — 27— h) = 1 —¢;. This entails that
the non-centrality parameters of the chi-square random variable that figures in the computation
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« of power is itself random. Note that a non-central chi-square random variable with R degrees of

freedom and non-centrality parameter Q is the distribution of (G1 + QY?)2 + G% + - - - + G%, where
G1,...Gg are independent, identically distributed standard Gaussians. On the basis of previous
work and pilot study, we have chosen to compute the power of our size .05 tests for N always 200, ¢
from .55 to .85 in increments of .05; v = .03, .05, .10; and, as was stated, R = 9,12,15, and 18. The
simulated values of power are presented in Table 13. These form the basis of our earlier estimates
for the necessary number of patients and should be updated as data is acquired.

6.4 Lesion Detection

The analysis of the lesion detection problem is not yet complete. The final analysis will be submitted
at a future date. The results obtained so far have supported the central hypothesis that there is no
difference between the imaging modalities from a lesion detection viewpoint. This section presents
the results obtained so far, draws conclusions from them, and indicates what analysis still needs to
be done.

The data subset which has been analyzed consists of those observations recorded by the UVa
judges. Sensitivity and PVP values were obtained for each judge with respect to a personal gold
standard defined by their analog original viewings. The data are summarized in Table 14. The
results of the Behrens—Fisher t-statistic indicated no statistically significant differences at the 5%
significance level for either the sensitivity or PVP results. Indeed, there were no differences at the
10% significance level. The results therefore support the central hypothesis.

The use of a personal gold standard, as explained elsewhere in this report, is not desirable. By its
use we can at best show that the digital images are equivalent to the analog images. It would have
been preferable to use the independent gold standard, as was done for the management analysis.
Unfortunately, neither tl'e independent gold standard nor the Stanford data subset was ready for
lesion analysis as of the report deadline. The reasons for the delay are discussed later in the report
but essentially involved a shortage of personnel to perform laborious retroactive measurements. The
process of bringing the independent gold standard and the Stanford data set to a level whereby
they can have lesion analysis performed on them is underway. Once completed, the lesion analysis
can be repeated with respect to the consensus gold standard on a larger data set.

6.5 Subjective Ratings vs. Bit Rate

In the previous sections, objective measures of the quality of the compressed images were analyzed
via the SNR values and patient management decisions on the digitally compressed images. It is
also informative to examine the effects of compression on subjective opinions. Table 15 provides
the means and standard deviations for the subjective scores for each radiologist separately and for
the radiologists pooled. The distribution of these subjective scores are displayed in Figures 3-5.

Figure 3 displays the frequency for each of the subjective scores obtained with the analog images.
Figure 4 displays the frequency for each of the subjective scores obtained with the uncompressed
digital images (judges pooled), and Figure 5 displays the frequency for each of the subjective scores
obtained with the digital images at Level 3.

Using the Wilcoxon signed rank test, the results were as follows:

Judge A: All levels were significantly different from each other except the digital to .4 bpp, digital
to 1.75 bpp, and .4 to 1.75 bpp.

Judge B: The only differences that were significant were .15 bpp to .4 bpp and .15 bpp to digital.
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+ Judge C: All differences significant .

All judges pooled: All differences were significant except digital to .15 bpp, digital to 1.75 bpp,
.15 to .4 bpp, and .15 to 1.75 bpp.

Comparing differences from the independent gold standard, for Judge A all were significant except
digital uncompressed, for Judge B all were significant, and for Judge C all were significant except
1.75 bpp. When the judges were pooled, all differences were significant.

There were many statistically significant differences in subjective ratings between the analog and
the various digital modalities, but some of these may have been a result of the different printing
processes used to create the original analog films and the films printed from digital files. The
films were clearly different in size and in background intensity. The judges in particular expressed
dissatisfaction with the fact that the background in the digitally produced films was not as dark
as that of the photographic films, even though this ideally had nothing to do with their diagnostic
and management decisions.

6.6 Combined Compression and Classification

For this experiment a set of 12 bit 100 micron resolution digitized mammograms was used. The
images contained calcifications or masses. Two different training sets were formed. One training set
consisted of mammograms with calcifications and the other training set contained mammograms
with masses. Each training vector consisted of a 2x2 pixel block of intensity values and a class label.
We considered two test images taken from outside of the training sets. One test image contained
calcifications and was encoded using the calcification codebook. The other test image contained
masses and was encoded using the mass codebook.

SNR was measured as 10log,,(Do/D), D being the distortion measured by mean squared error,
and Dy the distortion obtained on the test sequence using the best zero rate code. The classification
performance is measured by three parameters: Bayes risk, sensitivity and specificity.

We used a tree-structured compression code for the Bayes VQ system (BTSVQ design). We
compare our results with an independent tree-structured design of classifier and quantizer (inde-
pendent TSVQ design), corresponding to the special case of A = 0 in a Bayes VQ system. We
also compare the performance of our system to Kohonen’s “learning vector quantizer” (LVQ) [71], a
popular classification method for a variety of applications. LVQ implicitly designs a full search code-
book to reduce classification error rather than reducing compression error. The encoder operates
as an ordinary minimum squared error selection of a representative from the codebook. Because
the algorithm does not explicitly consider compression in its design, we use the codebook only for
classification purposes. An optimized version of this codebook, which replaces encoder codewords
produced by LVQ by the centroids of all training vectors that map into them, is then used to provide
the reproduction vectors [67]. For the LVQ design, the codebook was initialized using the LVQ PAK
propinit algorithm and then designed using the olvgl with the modification discussed above. We
note that LVQ does not have the capability to incorporate unbalanced misclassification costs into
its design.

For the analysis of the mammogram with calcifications, we designated the cost of misclassifying
a tumor vector as 50 times more detrimental than misclassifying a nontumor vector. We selected
A = 10° for the BTSVQ design. Figure 6 presents results obtained on a portion of the test image
containing calcifications at 2bpp.

The table indicates that the BTSVQ design produced lower Bayes risk and comparable SNR to
the independent TSVQ design for the test image containing calcifications. The table also indicates
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. that the BTSVQ design significantly outperformed LVQ with respect to both SNR and Bayes
risk. The BTSVQ design yielded higher specificity but lower sensitivity to that obtained with the
independent TSVQ design. Because of the preponderance of nontumor vectors, the 3.15% difference
in specificity can affect the visual quality of the images considerably. This is illustrated in Figure 1,
where we observe less false highlighting with the BTSVQ design than with the independent TSVQ
design. Although the sensitivity obtained for the encoded calcification image using the Bayes T'SVQ
method seems low, if we use a criterion that is less stringent than the pizel-by-pizel definition that
asks whether the algorithm has detected enough of the lesion to signal the radiologist, the answer
to such a question would be affirmative.

For the analysis of the mammogram with a mass, we designated the cost of misclassifying a
mass vector as ten times more harmful than a false alarm. The BTSVQ design again used A = 10°.
Table 17 provides the statistical results obtained using the BTSVQ and independent TSVQ designs
on the test image containing masses at 2 bpp. LVQ did poorly on this image (none of the mass
vectors were classified correctly and its compression performance was very low), and as such a
comparison with LVQ here is not meaningful.

We again observe that the the BTSVQ design produced lower Bayes risk and comparable SNR to
the independent TSVQ design. In addition, the BTSVQ design yielded higher specificity but lower
sensitivity to that obtained with the independent design. The BTSVQ design correctly identified
the one mass in the corresponding test image section including its spiculation. The independent
design, however, did not clearly point out the mass area. Although both algorithms produced false
highlighting, the amount engendered by the BTSVQ design was considerably less than that of the
independent design (a 5.1% difference).

For both calcification and mass images, the BTSVQ and independent designs produced a tradeoff
between specificity and sensitivity, i.e., an increase in performance in one of the measures resulted
in a decrease in performance in the other. We note, however, that only the Bayes TSVQ design
has the ability to select a desirable ratio between these two measures using both costs and the A
parameter.

The BTSVQ design produced lower Bayes risk and visually superior compressed/classified images
compared to those obtained with the independent TSVQ design and with LVQ on the two test images
we investigated. Although, the general area of the lesions were identified by the BTSVQ algorithm,
we obtained some false highlighting as well — particularly with the mammograms containing masses.
We note, however, that the A value and costs inherent in the BT'SVQ design allow a flexibility in
the compression and classification performance.

6.7 Observations on Implementation

In the course of performing the experiment several observations and conclusions were drawn con-
cerning the details of implementation. As the experiment proceeded, certain items were fine tuned
so as to assist eventual statistical analysis or to save human labor. This section of the report high-
lights a few of the more important observations and conclusions. Some are related to the actual
process of collecting data, others to the eventual analysis of the data.

Data Collection

The data collection process was a long and laborious one, involving many hours on the part of
both radiologists and student assistants. Details of the experimental implementation have already
been discussed and are elaborated upon in the appendix. Worth highlighting is the importance of
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. finding the absolute minimal amount of data that needs to be collected to allow a proper statistical
analysis of the central hypothesis. While clearly advisable to err on the side of caution (that is,
collecting as many observations as possible), the price of excessive caution is a long data collection
period with direct economic costs. Requiring that a single additional measurement be taken per
finding, when multiplied by the thousands of findings in the experiment, adds up to a significant
number of human hours. It is absolutely vital that a careful analysis of the statistical requirements
be undertaken at the outset of a project.

The manner by which this experiment was conducted allowed for a midstream evaluation of
the sufficiency of the data collected. After the Stanford component of the clinical experiment
was completed, computer programs were developed to analyze the preliminary data. More will
be said of these computer programs in the next section. They are mentioned here only because
in the course of their development it was discovered that a slight modification of the experimental
technique would greatly simplify the analysis. The simplification involved the selection of a different
coordinate basis for measuring lesions. These modifications were made to the experimental design
before beginning the University of Virginia component of the clinical experiment. The Stanford data
were retroactively measured by students with respect to this new basis. This retroactive measuring
process did not require any interaction with radiologists. It is solely responsible for the delays in
completing the full lesion detection analysis on schedule. These analyses will be completed and
submitted as an addendum to this report.

Data Analysis

The observations of the radiologists were captured by student assistants according to the instructions
and on the forms listed in the previous section. Before the data could be analyzed it had to be
entered into an electronic format suitable for processing by statistical programs developed for this
experiment.

The World Wide Web was used for the process of entering the data. This medium offered several
advantages: it allowed people to enter data concurrently and it allowed data to be entered from
any computer with an Internet connection and a Web browser. Use was made of forms, a protocol
for entering data through the Web. These forms proved to be a powerful medium for data entry.
It was possible to check the data being entered to ensure it’s logical consistency. For example, if a
field required floating point numbers and something other than that was entered, a message would
be shown to the user asking him or her to check the accuracy of their typing. The issue of accurate
manual entry of data is extremely important. If the electronic version of the data doesn’t match the
version recorded during the clinical experiment, a garbage in/garbage out paradigm results. The
Web in general and forms in particular tremendously reduced the likelihood of incorrect entry. It’s
use as a data entry facility is highly recommended.

That said, it is nearly impossible to ensure one hundred percent accuracy of manually entered
data. Some measure of double data entry needs to be undertaken to check accuracy. This was
indeed done in this experiment. Another method of data entry, designed both to reduce human
labor and to increase accurate entry, is to make use of electronic scanners. There was no framework
for using them in this study, i.e., no preexisting software base nor capital to acquire or develop such
software. Retrospectively, scanning the paper forms instead of manually entering them would have
been beneficial.

The programming language perl was heavily used in the course of this experiment. It provided
the engine both for the entry of data on the Web (the form data is posted to a perl program)
and for subsequent statistical analysis. All of the data collected in this project amounted to 2.38
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. megabytes of information. The data were stored in a moderately complex arrangement of flat text
files. These text files were read and organized into a database suitable for searching and querying
by a perl program. The perl database could be electronically searched; the information so generated
was passed on to statistical programs (themselves often written in perl). Perl proved to be a cost
effective solution to our database and analysis problems.

6.8 Relation to Original Statement of Work

The original Statement of Work is included as Appendix C. The original proposal requested three
years of funding, but only two years were awarded and the proposal for completing and extending
the original project was not successful. Hence the project was primarily devoted to the first two
tasks.

As described previously, the data used in the study were acquired by digitizing analog mammo-
grams as the digitally acquired mammograms available at the time were not deemed of sufficient
quality. The primary Tasks 1 and 2 were carried out and completed for the comparisons of original
analog, digital original, and lossy compressed digital mammograms using traditional film presen-
tation. Task 3 was not carried out as it was originally intended for the third and unfunded year.
Some progress was made towards algorithm development and work will continue on the theory and
algorithm development with NSF support.

Data acquisition and clinical simulations required far more time than originally envisioned,
largely because of the difficulties in conducting multi-institution and interdisciplinary work, the
necessity for developing new statistical methods, and the logistical problems in the actual judging
and gathering of experimental data. Nonetheless the clinical experiment comparing analog, digital,
and lossy compressed digital mammograms was completed within the original budget by means of
a no-cost extension.

7 Conclusions

The basic conclusions as detailed in the discussion in the previous sections are the following.

e A method of clinical experimental design and analysis for comparing analog, digital, and lossy
compressed digital images has been developed, implemented, and tested in a pilot experiment
involving 57 patients, 6 radiologist judges, and two additional radiologists serving as the
expert panel for establishing independent gold standards. The method can be extended to
other applications involving the comparison of images produced by differing image modalities
or altered by computer processing. The pilot study was the largest data gathering experiment
ever conducted to our knowledge for the comparison of analog and digital mammograms.

e The experiment demonstrated for the limited test set that for the resolution considered (50
micron spot size), lossy compression from 12 bits per pixel to .15 bits per pixel (80:1 compres-
sion ratio) results in no significant differences in management decisions based on the images
among the analog, digital, or lossy compressed digital images.

e Preliminary experimental results demonstrated for the limited test set that for the resolution
considered (50 micron spot size), lossy compression from 12 bits per pixel to .15 bits per pixel
(80:1 compression ratio) results in no significant differences in lesion detection based on the
images among the analog, digital, or lossy compressed digital images.
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e Parameters for an experiment sufficiently large to be definitive in terms of size and power
were estimated and reported.

e A new method for combining compression and classification for the purpose of automatically
highlighting suspicious regions as part of the compression operation was extended to digital
mammograms and the identification of microcalcifications and masses. The algorithm per-
forms poorly in comparison to sophisticated pattern recognition techniques, but it is promising
in that it involves no complicated signal processing, is incorporated into the compression al-
gorithm, and is intended only to assist a radiologist by highlighting, not to make diagnoses.
Given that the algorithm so far involves only operations on small 2 x 2 pixel blocks, it is
expected that performance will improve considerably when the approach is extended to larger
blocks and better probability distribution estimation methods.
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Figure 2: Scatter plot of SNR.
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(©)
Figure 6: Compression and classification of digitized mammograms at 2 bpp for calcifications:
(A) Portion of Compressed Mammogram using BTSVQ with posterior estimation (B) Com-
pressed/Classified image using BTSVQ with posterior estimation (white highlighted areas denote
pixel blocks classified as microcalcifications) (C) Original 12 bit image with microcalcifications
highlighted in white (D) Compressed/Classified image using independent TSVQ design (white high-
lighted pixel areas denote pixel blocks classified as microcalcification).
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(©) (D)

Figure 7: Compression and classification of digitized mammograms at 2 bpp for masses: (A) Portion
of Compressed Mammogram (B) White area denotes highlighted pixel blocks classified as mass in
(A) using posterior estimation (sensitivity 0.494, specificity 0.708) (C) White area denotes the
actual mass area (D) White area denotes highlighted pixel blocks classified as mass in (A) using
independent design (sensitivity 0.532, specificity 0.657).
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Table 1: Data Test Set: 57 studies, 4 views per study. Films printed using a Kodak 2180 X-ray
film printer, a 79 micron 12 bit greyscale printer.

Category Minimum number of cases
Total 400

Normal 200
Mammographically-detected breast cancers 110

Benign Findings 75

Breast Edemas 15

Table 2: Proposed data set.

I\ I Right Wrong Row Sums
Right N(1,1) N(1,2) N(1,1)+ N(1,2)
Wrong N(2,1) N(2,2) N(2,1)+ N(2,2)

Column Sums | N(I1,1) + N(2,1) | N(1,2) + N(2,2) | N

Table 3: Agreement 2 X 2 table.

41



I\ I Right Wrong

Right |2y +h—-1+y|[1—-%—-h—1y Y

Wrong 1—¢Y—7v ¥ 1—
| Y+ h | 1—-v—-h | 1

Table 4: Management outcome probabilities.

INI Right Wrong

Right | a= 20l [ p= Y02 [ a4p

Wrong | ¢ = ﬂ%—l) d="= 13’2) c+b
atc b+d

Table 5: Agreement relative frequencies.

View SNR
0.15 bpp ROI | 0.4 bpp ROI | 1.75 bpp ROI
left CC 45.93 dB 47.55 dB 55.30 dB
right CC 45.93 dB 47.47 dB 55.40 dB
left MLO 46.65 dB 48.49 dB 56.53 dB
right MLO 46.61 dB 48.35 dB 56.46 dB
left side (MLO and CC) 46.29 dB 48.02 dB 55.92 dB
right side (MLO and CC) 46.27 dB 47.91 dB 55.93 dB
Overall 46.28 dB 47.97 dB 55.92 dB
Table 6: Average SNR.
View SNR, Bit Rate
0.15 bpp ROI | 0.4 bpp ROI | 1.75 bpp ROI
Teft CC 44.30 B, 0.11 bpp | 45.03 dB, 0.24 bpp | 46.44 dB, 0.01 bpp
right CC 44.53 dB, 0.11 bpp | 45.21 dB, 0.22 bpp | 46.88 dB, 0.85 bpp
left MLO 44.91 dB, 0.11 bpp | 45.73 dB, 0.25 bpp | 47.28 dB, 1.00 bpp
right MLO 45.22 dB, 0.11 bpp | 46.06 dB, 0.25 bpp | 47.96 dB, 0.96 bpp
left side (MLO and CC) | 44.60 dB, 0.11 bpp | 45.38 dB, 0.24 bpp | 46.89 dB ,0.96 bpp
right side (MLO and CC) | 44.88 dB, 0.11 bpp | 45.63 dB, 0.24 bpp | 47.41 dB, 0.92 bpp
Overall 44.74 dB, 0.11 bpp | 45.51 dB, 0.24 bpp | 47.14 dB, 0.93 bpp

Table 7: Average SNR: full image, wavelet coding.
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View SNR

1.55 bpp ROI | 1.90 bpp ROI | 2.80 bpp ROI
left CC 42.51 dB 44.65 dB 50.68 dB
right CC 43.49 dB 45.78 dB 51.88 dB
left MLO 45.27 dB 47.38 dB 52.54 dB
right MLO 44.45 dB 46.73 dB 52.66 dB
left side (MLO and CC) 43.89 dB 46.02 dB 51.61 dB
right side (MLO and CC) 43.89 dB 46.25 dB 52.27 dB
Overall 43.93 dB 46.13 dB 51.94 dB

Table 8: Average SNR: ROI, perceptually optimized JPEG coding.

INT|R|W
R | 7] 2
W [1] 2

RTS

INT|R|W
R |6] 3
W |1l]2

RTS

INT|R|W
R |63
W 0] 3

RTS

INT|R|W
R (4] 4
W 10| 3

RTS

INT|R|W INT|R|W
R |0}]0 R j6]|4
W [0]1 W [ 3]5

F/U C/B
(A) Analog vs. Digital Original

INT|R|W INT|R|W
R (0[O0 R [ 8] 2
W [0]1 W 216

F/U C/B

(B) Analog vs. Digital Lossy Compressed: 1.75 bpp

INT|R|W INT|R|W
R [0]O R [6] 4
W |[0] 1 W [2]6
F/U C/B
(C) Analog vs. Digital Lossy Compressed: 0.4 bpp
INT|R|W INT|R|W
R [0]O R [3]7
W (0] 1 W 4] 4
F/U C/B

(D) Analog vs. Digital Lossy Compressed: 0.15 bpp

Table 9: Agreement 2 x 2 tables for fadiologist A.
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INT|R|W
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W 1416
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INT|R|W
R |11} 4
W [ 4|6
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RTS | F/U | C/B | BX RTS | F/U | C/B | BX RTS | F/U | C/B | BX
RTS | 11 0 5 1 RTS 4 0 0 0 RTS 8 0 6 1
F/U] 0 | 0 | 0 | 0 F/U[ 0 | 0 0 [ 1 F/U| 0 | 0 0 [0
C/B| 3 | 0 | 11 | 7 C/B] 3 | 0 3 | 3 C/B| 1 0 | 10 | 1
BX 2 0 2 15 BX 1 0 7 35 BX 0 0 7 23

A: Analog versus Digital

RTS | F/U | C/B | BX RTS | F/U | C/B | BX RTS | F/U | C/B | BX
RTS | 11 0 6 0 RTS 2 1 0 1 RTS 11 0 4 0
F/U 0 0 0 0 F/U 0 1 0 0 F/U 0 0 0 0
C/B| 2 0 | 15 | 4 C/B| 3 T 3 2 C/B| 1 T 8 | 2
BX 1 0 2 16 BX 1 0 4 37 BX 1 0 5 24

B: Analog versus Lossy Compressed Digital: 1.75 bpp

RTS | F/U | C/B | BX RTS | F/U | C/B | BX RIS | F/U | C/B | BX
RIS 9 0 6 2 RTS 1 0 2 1 RTS 7 0 7 1
F/U| 0 | 0 | 0 | 0 F/U| 0 | 0 0 | 1 F/U[ 0 | 0 | 0 | 0
C/B| 1 0 | 10 | 10 C/B| 2 0 7 [ 5 C/B| 2 0 8 | 2
BX 1 0 2 15 BX 2 0 5 36 BX 1 0 4 25

C: Analog versus Lossy Compressed Digital: 0.4 bpp

RTS | F/U | C/B | BX RTS | F/U | C/B | BX RTS | F/U | C/B | BX
RTS 8 0 7 1 RTS 3 1 0 0 RTS 7 0 7 0
F/U] 0 | 0 | 0 | 0 F/U[ 0 T 0 [0 F/U] 0 | 0 | 0 | O
C/B| 3 1 9 | 8 C/B| 3 [ 0 3 | 2 C/BlT 0 | 0 | 9 | 3
BX 1 0 6 11 BX 1 1 5 35 BX 0 0 9 20

D: Analog versus Lossy Compressed Digital: 0.15 bpp

Radiologist A

Radiologist B

Radiologist C

Table 10: Radiologist agreement tables, Stanford judges.
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RTS | F/U | C/B | BX RTS | F/U | C/B | BX RTS | F/U | C/B | BX
RTS | 16 0 0 8 RTS 22 0 5 0 RTS 23 | 0 1 1
F/U[ 1 | 2 T 10 F/U| 0 | 0 ] 3 | 0 F/U| 0 | 0 | 0 | 0
C/B| 1 7 [ 0 | 0 C/B| 5 1 7 1 C/B| 2 T 8 [ 4
BX 2 1 1 22 BX 1 0 3 9 BX 0 0 3 14

A: Analog versus Digital

RTS | F/U | C/B | BX RTS | F/U | C/B | BX RTS | F/U | C/B | BX
RTS 16 0 3 5 RTS 24 0 2 1 RTS 20 1 3 1
F/U| 1 2 T [0 F/U| 0 | 0 | 3 | 0 F/U] 0 | 0 | 0 | 0
C/B | 1 0 T | 1 C/Bl 5 | 0 | 7 | 2 C/B| 2 | 1 7 15
BX 0 0 2 24 BX 0 0 4 9 BX 1 0 0 16

B: Analog versus Lossy Compressed Digital: 1.75 bpp

RTS | F/U | C/B | BX RTS | F/U | C/B | BX RTS | F/U | C/B | BX
RTS 15 1 2 6 RTS 20 0 4 3 RTS 20 1 3 1
F/U| 3 | 1 0 | 0 F/U | 1 0 | 2 [0 F/U[ 0 | 0 | 0 | 0
C/B| 1 1 T |0 C/B| 3 T 7 3 C/B| 2 0 7 1 6
BX 1 2 0 23 BX 0 1 3 9 BX 0 0 1 16

C: Analog versus Lossy Compressed Digital: 0.4 bpp

RTS | F/U | C/B | BX RTS | F/U | C/B | BX RTS | F/U | C/B | BX
RTS 13 2 4 4 RTS 19 1 4 2 RTS 20 0 4 0
F/U | 2 1 0 [ 1 F/U| 0 | 0 | 2 | 1 F/U] 0 | 0 | 0 |0
C/B| 1 T T [ 0 C/B| 6 0 7 | 1 C/B| 1 0 8 [ 6
BX 1 0 1 24 BX 0 0 3 13 BX 0 0 2 15

D: Analog versus Lossy Compressed Digital: 0.15 bpp

Radiologist D

Radiologist E

Radiologist F

Table 11: Radiologist agreement tables, UVa judges.
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level judge | sensitivity specificity | PVP
mean stdev | mean stdev | mean
0.826 0.379 | 0.692 0.462 | 0.905
1.000 0.000 | 0.308 0.462 | 0.836
0.913 0.282 | 0.846 0.361 | 0.955
0.886 0.317 | 0.769 0.421 | 0.929
0.955 0.208 | 0.385 0.487 | 0.840
0.932 0.252 | 0.462 0.499 | 0.854
0.814 0.389 | 0.333 0.471 | 0.814
0.953 0.211 | 0.417 0.493 | 0.854
0.977 0.151 | 0.500 0.500 | 0.875
0.860 0.347 | 0.615 0.487 | 0.881
0.955 0.208 | 0.154 0.361 | 0.792
0.977 0.149 | 0.615 0.487 | 0.896
0.841 0.366 | 0.538 0.499 | 0.860
0.953 0.211 | 0.231 0.421 | 0.804
0.932 0.252 | 0.769 0.421 | 0.932

CUUT U i i 00 WO WO DN N N e
QErQEEQWE QW QW >

Table 12: Sensitivity, specificity and PVP for management: Level 1 refers to the analog images,
level 2 to the uncompressed digital, and levels 3, 4, and 5 refer to those images where the breast
section was compressed to 0.15, 0.4 and 1.75 bpp respectively (and where the label was compressed
to .07 bpp). Only the Stanford judges are shown.
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Table 13: Power as a function of parameters.

v
0.55

0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.55
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60

Power as a Function of Parameters

~ h R Power for a 5% Test
0.03 0.03 9 0.14
0.03 0.03 12 0.14
0.03 0.03 15 0.16
0.03 0.03 18 0.17
0.03 0.05 9 0.33
0.03 0.05 12 0.38
0.03 0.05 15 0.43
0.03 0.05 18 0.48
0.03 0.10 9 0.96
0.03 0.10 12 _ 0.99
0.03 0.10 15 1.00
0.03 0.10 18 1.00
0.05 0.03 9 0.13
0.05 0.03 12 0.16
0.05 0.03 15 0.17
0.05 0.03 18 0.18
0.05 0.05 9 0.32
0.05 0.05 12 0.40
0.05 0.05 15 0.45
0.05 0.05 18 0.53
0.05 0.10 9 0.95
0.05 0.10 12 0.99
0.05 0.10 15 1.00
0.05 0.10 18 1.00
0.10 0.03 9 0.16
0.10 0.03 12 0.15
0.10 0.03 15 0.17
0.10 0.03 18 0.20
0.10 0.05 9 0.41
0.10 0.05 12 0.47
0.10 0.05 15 0.53
0.10 0.05 18 0.56
0.10 0.10 9 0.99
0.10 0.10 12 1.00
0.10 0.10 15 1.00
0.10 0.10 18 1.00
0.03 0.03 9 0.12
0.03 0.03 12 0.16
0.03 0.03 15 0.18
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0.03 0.05 18 0.56
0.03 0.10 9 0.98
0.03 0.10 12 0.99
0.03 0.10 15 1.00
0.03 0.10 18 1.00
0.05 0.03 9 0.15
0.05 0.03 12 0.16
0.05 0.03 15 0.20
0.05 0.03 18 0.19
0.05 0.05 9 0.38
0.05 0.05 12 0.45
0.05 0.05 15 0.52
0.05 0.05 18 0.58
0.05 0.10 9 0.99
0.05 0.10 12 1.00
0.05 0.10 15 1.00
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level judge sensitivity specificity
mean stdev | mean stdev
0.689 0.437 | 0.667 0.443
0.825 0.372 ] 0.842 0.356
0.791 0.364 | 0.789 0.361
0.741 0.417 | 0.680 0.432
0.824 0.360 | 0.795 0.379
0.830 0.344 | 0.775 0.370
0.763 0.401 | 0.735 0.411
0.798 0.374 | 0.754 0.413
0.776 0.389 | 0.732 0.399
0.775 0.391 | 0.759 0.400 |
0.801 0.375(0.795 0.379
0.826 0.356 | 0.781 0.384
pooled | 0.768 0.394 | 0.766 0.393
pooled | 0.799 0.375 | 0.750 0.395
pooled | 0.779 0.386 | 0.740 0.405
pooled | 0.801 0.373 | 0.778 0.386
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Table 14: Sensitivity, specificity and PVP for lesion detection: Level 2 refers to the uncompressed
digital, and levels 3, 4, and 5 refer to those images where the breast section was compressed to 0.15,
0.4 and 1.75 bpp respectively (and where the label was compressed to .07 bpp). These numbers
are with respect to the level 1 personal gold standard (that is, the analog originals). Only the UVa
judges are shown.
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level judge mean stdev
1 A 390 .97
1 B 4.52 75
1 C 459 .79
2 A 3.91 41
2 B 3.85 .53
2 C 3.67 .65
3 A 3.82 .39
3 B 427 .93
3 C 349 64
4 A 3.91 .39
4 B 3.93 .55
4 C 3.82 .50
5 A 3.92 .42
5 B 3.66 .57
5 C 3.82 .55
judges pooled
1 pooled 4.33 .89
2  pooled 3.81 .55
3  pooled 3.86 .76
4  pooled 3.88 .49
5 pooled 3.80 .57

Table 15: Subjective scores.

| Codebook design method: || SNR(dB) [ Sensitivity | Specificity | Bayes Risk
Bayes TSVQ 29.2 41.19 92.60 0.106
Independent TSVQ 29.2 47.92 89.45 0.134
Kohonen’s LVQ 19.3 59.48 55.08 0.471

Table 16: Statistical results of algorithms on mammogram images containing calcifications coded
at 2 bpp.

| Codebook design method: | SNR(dB) [ Sensitivity | Specificity | Bayes Risk |

Bayes TSVQ 32.96 49.45 70.80 0.351
Independent TSVQ 32.93 53.24 65.66 0.397

Table 17: Statistical results of algorithms on mammogram images containing masses coded at 2
bpp.
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B Questionnaires/Clinical Protocols

This Appendix contains the basic observer form used in the clinical experiments and the instructions
for the assistants who record the radiologist’s decisions on the form and prompt for the ACR
categories. The most recent versions of these forms are publically available at the project Web
cite [49], along with “prompt sheets” the radiologists use for checking on possible categories.

93



* ID number Session number Case number

Reader initials
Mammograms were of ( Left  Right  Both ) breast(s).

Subjective rating for diagnostic quality:

Teft CC | Left MLO | Right CC | Right MLO

(bad) 1 -5 (good):

If any rating is < 4 the problem is:

1) sharpness 2) contrast 3) position 4) breast compression
5) noise 6) artifact  7) penetration
Recommend repeat? Yes No
Breast Density: Left 1 2 3 4 Right 1 2 3 4
1) almost entirely fat 2) scattered fibroglandular densities

3) heterogeneously dense 4) extremely dense

Findings: Yes No

Note: If there are NO findings, the assessment is: (1) (IN) negative - return to screening
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* Findings (detection): Dominant Incidental, focal Incidental, diffuse

Individual finding side: = Left Right Both/Bilateral Finding # of

Finding type: (possible, definite)

1) mass 7) architectural distortion

2) clustered calcifications 8) solitary dilated duct

3) mass containing calcifications 9) asymmetric breast tissue
4) mass with surrounding calcs 10) focal asymmetric density
5) spiculated mass 11) breast edema

6) ill defined mass

12) multiple scattered and occasionally 20) fibroadenoma
clustered benign appearing calcs 21) calcified fibroadenoma
13) occasional scattered benign appearing calcs 22) vascular calcs
14) multiple benign appearing masses 23) dermal/skin calcs
15) skin lesion 24) post biopsy scar
16) milk of calcium 25) reduction mammoplasty
17) plasma cell mastitis/secretory calcs 26) implants
18) oil cysts 27) benign mass
19) lymph node
28) other
Location:
1) UOQ 5) 12:00 9) outer/lateral 13) whole breast 17) both breasts/
2) UIQ 6) 3:00 10) inner/medial 14) central bilateral

3) LOQ 7)6:00 11) upper/cranial 15) axillary tail
4) LIQ 8) 9:00 12) lower/inferior 16) retroareolar

View(s) in which finding is seen: CC MLO CC and MLO
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* Associated findings include: (p= possible, d= definite)

1) breast edema (p,d) 8) architectural distortion (p,d)
2) skin retraction (p,d) 9) calcs associated (p,d)
3) nipple retraction (p,d) with mass

4) skin thickening (p,d) 10) multiple similar masses (p,d)
5) lymphadenopathy (p,d) 11) dilated veins (p,d)
6) trabecular thickening (p,d) 12) asymmetric density (p,d)
7) scar (p,d) 13) none (p,d)

Assessment: The finding is

(A) indeterminate/incomplete, additional assessment needed
What? 1) spot mag 2) extra views 3) U/S 4) old films 5) mag
What is your best guess as to the finding’s 1-5 assessment? or are you
uncertain if the finding exists? Y

(1) (N) negative — return to screening

(2) (B) benign (also negative but with benign findings) — return to screening
(3) (P) probably benign finding requiring 6-month followup

(4L) (S) suspicion of malignancy (low), biopsy

(4M) (S) suspicion of malignancy (moderate), biopsy

(4H) (S) suspicion of malignancy (high), biopsy

(5) radiographic malignancy, biopsy

Comments:
Measurements:
CC View  Size: cm long axis by cm short axis
Distance from center of finding to: nipple cm
left edge cm, top edge cm
MLO View  Size: cm long axis by cm short axis
Distance from center of finding to: nipple cm
left edge cm, top edge cm
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ASSISTANT INSTRUCTIONS

PRE-SESSION INSTRUCTIONS

The radiologists will inform the assistants of suitable sites for hanging both the large digital
films and the small analog films for this study.

Prior to the session, an assistant will either hang both the films and the clear overlays, or just
the clear overlays for the session. Both film and overlay will need to be hung if this is the first
sitting of this session. However, if the films are being re-used for another radiologist, they should
have remained hanging and only the overlays will need to be hung.

After the films and the overlays are hung, the assistant should use a wax pencil and label the
overlays in the upper outer portion of the image where the patient label is. You will put the session
number, case number and reader initials. The most important information is the case number since
it indicates which patient and which rate is being read. The other information can be added later,
but the case number should be on the overlays prior to the session.

If there is a good place in the reading room to leave the envelopes for the films, that is fine.
Otherwise, return the envelopes to the office. The films will be placed back into these envelopes
after all the radiologist sittings for this session have occurred.

SESSION INSTRUCTIONS

Session Preparation

Make sure you have one completed cover sheet per case and many main sheets for the findings.
You may want to take extra cover sheets, just in case something happens. You should also have
your sheet of questions and a prompt sheet for the radiologist to reference.

The top portion of the cover sheet should be completed for each case in the session. If different
people are hanging the films and conducting the session, you should coordinate the ordering of the
films so that you do not have to hunt for the correct cover sheet during the session.

Besides the forms, you will need a pen to fill out the forms, a stapler and a magnifying glass for
the radiologist. He/she may come with one, but we should have one for them, just in case. (This
has been a request here, but the radiologists at your location may not have this same request.)

Session Prompting

1. Pause and let the radiologist have time to look over the case. They will give you some
indication that they are ready to begin with the questioning for this patient.

2. Using the cover sheet for the case being viewed, complete the portion below the dotted line.
Remember this is prompted for ONCE per patient case during the session. The following
questions will be asked:

(a) What is the quality of the films, 1 through 5, where 1 is bad and 5 is good?
(b) Is this true for all views?

YES - Write rating in all four boxes and continue
NO - To radiologist: Please tell me the rating for each view.

(c) If any view is rated 1,2 or 3 then ask:
Please identify the reason you have given a rating less than four as being either sharpness,
contrast, position, compression, noise, artifact or penetration.
Would you recommend a repeat?

(d) What is the breast density?

Notice that we
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y e Do not prompt for subjective rating for each view. We will obtain this information with
the second question. If they answer ‘no,” we will then ask for the rating for each view.

e Do not ask for the density of the left and right breasts individually. Typically the
density will be the same in both. If it is not, the radiologist will automatically give you
two densities.

¢ Do not read the density types, each radiologist will have a list to reference. If they give
you a type not listed, simply let them know that they need to choose one of the options
listed on their sheet.

3. Let’s see if we need to go to the main section of the data forms. We will get this information
with the following question: Are there any dominant or incidental findings?

NO - Circle NO for findings and proceed to the next case. Only the cover sheet will be
completed for this case.

YES - Circle YES for findings.

e If they mention one type, go to that line of questioning.

e If they either do not mention the type of finding or they say that both types exists,
go to the following question:
Are there any specific, dominant, important findings?

YES - go to QD.

NO - go to QI and replace the question
“What is it?”  with  “What is the incidental finding?”

QD Dominant Findings
Start filling out a findings sheet; this is the two page main section of the data sheet. There
will be ONE sheet for each finding.

QD1 If the radiologist has NOT already done so, ask them:
Please outline the finding, number it and mark the nipple.

e Many times the radiologist will outline the area while they are getting familiar with
the image. However, they may not mark the nipple or number the finding(s). In
addition, if there are multiple findings on one side, the breast marking will only be
asked once.

a) What and where is the finding?
b) Is it definite or possible?
)
)

(
(
(c
(d) Are there any (other) associated findings?
YES - What is it? Is it possible or definite?

e If the associated finding is “calcs associated with mass” say:
Please label the finding as xA and the associated finding as xB (where x is the
finding number). Please outline the associated finding.

e Repeat.

NO - Continue.

(e) What is your assessment?
indeterminate or incomplete - ask the following

What views do you see it in?

e What would you request?
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e What is your best guess of an assessment? <pause> or are you uncertain if the
finding exists?
(f) Are there any other specific, dominant, important findings?
YES - Return to QD1 and begin the questions for the next finding.
NO - Go to QL

QI Incidental Findings Start filling out a findings sheet; this is the two page main section of the
data sheet. There will be ONE sheet for each finding.

QI1 Are there (other) incidental findings that you would mention in your report, either focal
or diffuse?

NO - Staple forms to the cover sheet and proceed to the next case.

YES & FOCAL

(a) What and where is it?
(b) Is it definite or possible?

(c) If they have NOT already done so, ask the radiologist:
Please outline the incidental finding, number it and mark the nipple.

(d) What views do you see it in?
(e) Are there any (other) associated findings?
YES - What is it? Is it possible or definite?

e If the associated finding is “calcs associated with mass” say:
Please label the finding as xA and the associated finding as xB (where x is the
finding number). Please outline the associated finding.

e Repeat
NO - Continue.

(f) Are there any comments accompanying the benign assessment you would include in
your report?

(g) Return to QI1.

YES & DIFFUSE

(a) What and where is it?

(b) Is it definite or possible?
They should indicate the finding side, the type, location and views. If any of these
are not answered, ask for specifics.

(c) Are there any comments accompanying the benign assessment you would include in
your report?

(d) Return to QI1.
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POST-SESSION INSTRUCTIONS

After the session, measure the size , the distance to the nipple and the horizontal and vertical
offsets of the findings. The measurements will be recorded at the end of the findings sheet, the
main section of the data form. The only findings that are not measured are the diffuse incidental
findings.

Place the overlays and the data package in envelopes for safe keeping. There should be one
envelope per case. Remember to bring a set of envelopes for the overlays.

If these films are to be viewed by another radiologist, leave them hanging. If this is the last session
with these films, take them down and return them to their designated envelope. The envelopes for
the films may have been left in a designated area. However, if they were not, remember to bring

.these envelopes with you.
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+C Original Statement of Work

Compression and Classification of Digital Mammograms for Storage, Transmission, and Computer
Aided Screening

Task 1, Acquisition of Data and Compression Algorithm Selection, Months 1-12:

a. Expand our existing database of digitized analog mammograms. Obtain digitally acquired
mammograms (spot mammograms in the near future and full frame as available).

b. Label database: marking of microcalcifications and masses on hardcopy, corresponding pixel-
by-pixel labeling on computer. This has already been done for our current database.

c¢. Compare several compression algorithms in terms of easily found quality measures, signal-to--
noise ratios vs. bit rate, informal opinions of radiologists

d. Finalize details of compression study: monitor dynamic range, windows and levels, zoom,
image randomization, marking protocol.

e. Design of finite-state VQs and classifiers for important features based on empirical Bayes,
CART, and heuristic methods. Determine good classifiers operating on small pixel blocks for use
in both compression and combined compression/classification.

Task 2, Clinical simulations and statistical analysis for compression, Months 13-30:

a. Perform the clinical simulation based on the findings/assessment/management questionnaire
with four judges for the selected compression methods. Obtain independent gold standard from 2
additional judges.

b. Tabulate data and perform planned statistical analyses to compare bit rates, judges, and film
vs. monitor for both personal and independent gold standards.

c. Resolve any new issues arising from the data by additional statistical analyses as necessary.

d. Study alternative computable distortion measures: Use SNR and other computable measures
proposed in the literature to predict the diagnostic accuracy (sensitivity, predictive value positive,
measurement accuracy) and the subjective ratings data.

Task 3, Computer Assisted Diagnosis/Screening simulations and statistical analysis, Months
18-36:

a. Pilot study for combined compression/classification/enhancement: Simulate screening envi-
ronment with high resolution monitors capable of false color display. Study informally the relative
merits of various highlighting and enhancement algorithms in order to select most promising for
full study.

b. Full clinical simulation based on the findings/assessment/management questionnaire with
four judges for the selected compression/classification methods providing optional instantaneous
highlighting of regions classified as abnormal. Possible incorporation of other signal processing.

c. Statistical analysis of clinical utility of classification relative to independent gold standard.

d. Statistical analysis of clinical utility of classification relative to biopsy results.

e. Incorporate biopsy information into labeling: Redesign codebooks using improved class pos-
terior probabilities based on training data labeled using biopsy results as well as original radiologist
labels. Automatic reclassification of test data using new codes and comparison of performance
against previous codes.
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